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THE NORMALIZED CURVE SHORTENING FLOW
AND HOMOTHETIC SOLUTIONS

U. ABRESCH & J. LANGER*

The curve shortening problem, by now widely known, is to understand the
evolution of regular closed curves y: R/Z — M moving according to the
curvature normal vector: dy/dt = kN = —“the L?-gradient of arc length”.
One motivation for this problem has been the view expressed in this connec-
tion by C. Croke, H. Gluck, W. Ziller, and others: it would be desirable to
improve on some complicated and ad hoc constructions that have been used in
the theory of closed geodesics to iteratively shorten curves.

As a test case it has been a goal to prove the conjecture that kN generates a
flow on the space of simple closed curves in the plane, preserving embedded-
ness and making such curves circular asymptotically as length approaches zero.
However, the evolution equation for the curvature of vy, turns out to be quite
subtle, and the conjecture is not yet settled. Indeed, in the nonsimple case one
generally expects singular behavior, and part of the intrinsic interest of the
problem lies in the fact that the global condition of embeddedness is ap-
parently recognized by the “near-sighted” equation.

What is known thus far is that the conjecture is true for convex curves, that
simple curves do in fact remain simple (provided curvature stays bounded),
and that short time solutions to the equations exist in full generality; these
results are due to M. Gage and R. Hamilton (see [1], [2], [3]).

1. Main results

The starting point for the present investigation is a modification of the usual
curve shortening flow; the flow is geometrically unchanged, but a tangential
field T is added to kN to maintain constant-speed a = |[dy,/d¢| along the
curve.
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In terms of a new time parameter 7 satisfying df/dt = a? a normalized

curvature function (o, 7) = a(7)k(o, 7), and an auxiliary function B(o,7) =
a(7) - b(o, 7) whose average over ¢ € R/Z is zero, the evolution of a curve y
in a 2-manifold M is then described by
(1) g—K=K”+(,BK),+KR|7, ,B’=rc2—f1 k2 ds,

. T 0 )
where primes denote derivatives with respect to o and a?R|, is the curvature
of M along v.

The restriction to 2-manifolds is clearly inessential for normalization, but
simplifies the appearance of (1) significantly. One may choose to interpret k
and R as the actual curvatures of y and M, respectively, by changing the
metric on (M, g,) to the time-dependent metric g = a~2g, (so y always has
unit length).

An apparent benefit of the normalization is that the leading term in the
evolution equation is no longer the “Laplace-Beltrami” operator (which is
troublesome because it “changes” with the curve) but rather the ordinary
Laplacian. The new time parameter 7 makes the flow equivariant with respect
to dilations and also has the circle in E? collapsing to a point in infinite rather
than finite time. .

Equation (1) is used to obtain the results of (A), (B) and (C) below.

(A) As the nonlinear evolution equations of curve shortening evidently do
not tend themselves very well to a general partial differential equations
approach, the possibility of writing down some special solutions analytically is
of particular interest. Indeed, regarding the overall behavior of the flow, much
of the picture which emerges in (B), (C) is related to theé homothetic
solutions—trajectories of the planar curve shortening flow for which k does not
depend on time—whose classification is the content of

Theorem A. Let y: R/Z — E? be a unit speed closed curve representing a
homothetic solution of the curve shortening flow. Then vy is an m-covered circle
Y,» OF Y is a member of the family of transcendental curves (v, ,} having the
Jollowing description: if m and n are positive integers satisfying 1/2 < m/n
< V2 /2 there is (up to congruence) a unique unit speed curve Yt R/Z = E?
having rotation index m and closing up in n periods of its curvature function
k > 0, a solution to the equations
(2) B” + 2N (e - 1) =0, B =2Ilnk/A,
for some constant \.

If (r,8) are polar coordinates with origin at the center of mass of v,, ,, then k
and r are related by k = Cexp(3A\?r?) for some constant C.

Note that a particular case of Theorem A is the assertion that the circle is
the only simple homothetic solution, in agreement with the above-mentioned
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conjecture. The simplest noncircular solution, v, , is pictured in Figure 1(c),
below, and five others appear in Figure 2 in §3.

To obtain such complete information about the homothetic solutions one
makes use of the fact that equation (2) has a first integral:

(3) 1(B') +2AV(B)=2Ny, V(B)=e¢?-B -1,

with 7 a nonnegative constant which depends only on m and » and should be
thought of as determining the shape of v,, ,. On the other hand, as explained
in §3, A is just a scaling constant.

(B) As mentioned earlier, markedly different behavior is expected for various
trajectories of the curve shortening flow, depending on global properties of the
initial curves. However, in terms of function space topologies the following
theorem shows that the range of possible behavior is rather narrowly limited.

Theorem B. Let v, be a trajectory of the curve shortening flow in the plane
and let k. be the normalized curvature of v, (so k., satisfies equation ay.

(i) k, stays bounded in L\(R/Z) (in fact ||x|| ;2 is nonincreasing in 7).
(ii) If k, stays bounded in L*(R/Z), then so do all derivatives 3'x /30",

(iii) If «, converges in L' as 7 — oo, then vy, converges to a point and is
asymptotic in the CY(R/Z) topology to a homothetic solution. The same statement
holds for an arbitrary surface M* in place of E? except that, instead of
converging to a point, Y, may also converge to a geodesic.

Regarding part (ii) of Theorem B, more precise asymptotic bounds are given
in §4. Such bounds reflect the partially smoothing nature of the flow, a
phenomenon due to the Laplacian on the right-hand side of equation (1). To
this extent comparison with the behavior of the heat equation is appropriate;
however, the nonlinear lower order term generally disrupts the familiar total
smoothing phenomenon. In fact, the existence of the (noncircular) homothetic
solutions shows that one cannot expect the derivatives 3’k /3¢’ to decay to
zero even if k, remains L*-bounded. In this sense, the asymptotic bounds
obtained here provide the best possible general set of estimates.

The utility of part (iii) is enhanced by the observation that a trajectory of the
curve shortening flow is a regular homotopy. Thus, e.g., if v, is simple and &,
converges in L', then k. is asymptotic to a circle, as conjectured. On the other
hand, if vy, has rotation index zero (e.g., if v, looks like a figure eight), then
cannot possibly converge in L.

The nonconvergence result just mentioned, together with parts (i) and (ii) of
Theorem B, suggest that the limiting curvature for a symmetrical figure eight
might be a sum of two Dirac measures § = m(§, — §; /).

(C) Perhaps the main challenge of the curve shortening problem is to
distinguish curves with a nonsingular future from those with a singular future.
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The homothetic solutions not only provide nonconvex examples belonging to
the former category, but they also appear to locate part of the boundary
between the two categories; hence, there is reason to regard them as compari-
son solutions for the flow.

In fact, the very existence of the homothetic solutions—including the rather
arbitrary looking numerical condition 1/2 < m/n < V2 /2 in the classification
—can be understood by regarding the homothetic curves as saddle points lying
between circles, on one side, and singular curves, on the other (this viewpoint
helps simultaneously to explain the following rather curious coincidence: the
classification of closed free elasticae in the hyperbolic plane follows the very
same arithmetic condition and qualitative description [4]).

To explain the above more concretely, observe first that v,, , is “fixed” by
the group G = G(m,n) = {g) = Z,, where g corresponds to rotation by
8 = 27m/n. Figure 1 describes, for the case m = 2, n = 3, a g-equivariant
regular homotopy beginning at v,,, passing through y, ,, and tending to a
singular curve I, .

OC

Y " : Ym,n
(a) (®) (©)
I-‘m.n
(d) (®) ()

FiG. 1.
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A reasonable conjecture associated with this picture is that if ¢ > 0 is a small
number and N is the outward pointing normal along v,, ,,, then the trajectories
through y,=v,, ,+¢eN and y_=yv, , — &N are asymptotic to v,, and a
singular curve resembling I, ,, respectively.

The evidence for such a conjecture comes in two parts. On the one hand, for
somewhat larger ¢, it can be proved rigorously that y_ does indeed become
singular; this follows from a general area criterion for divergence proved in §5.
On the other hand stability computations suggest that y,, ought to attract
curves resembling (b) of Figure 1 (even though v, is linearly unstable for
m > 1).

More specifically, let £ = {x € C*(R/Z): if y(s) has unit speed and
curvature «(s), then y is a regular closed curve}, let G act on £ by gk(s) =
k(s — 2mm/n), and set Q¢ = {k € : gk = «}, the fixed point set of G. Note
that the evolution equation (1) induces a flow on Q€. Set k,, = 27m € 9, the
curvature of v,,, and let L be the linearization of the flow at «,,. Then it is
shown in §5 that the operator L on TKMQG(""") has strictly negative spectrum
precisely when |m/n| < 2 /2.

Note that the other inequality 1/2 < m/n is implicit in Figure 1; for each of
the n petals must contribute at least # to the total rotation 2#m. Thus, the
arithmetic condition of the classification is heuristically explained.

2. The normalized flow

The following propositions refer to the notation of §1.

Proposition 2.1.  Let v: [0,1,) X R/Z — M" evolve according to 0y/dt = W
= hT + kN, where h: [0, t;) X R/Z — R is some smooth function. Then each v,
has constant speed if and only if vy, has constant speed and h satisfies h’ /o = k*
— Jo k*do.

Proof. The Frenet equations yield

da’/0t = 2<V Wy’,y'> = 2<V7fW, y’> =2a(h — ak?),

hence, 921na/3tdc = d(h’/a — k?)/do. The proposition follows easily from
the latter equation, together with the periodicity requirement on 2. q.e.d.

We can now define the normalized flow on the space of constant speed
immersions of R/Z into M by dy/d71 = (3t/37)W = a>(bT + kN), where b
is defined to have average value zero and satisfy b’ /a = k? — [} k*do.

Proposition 2.2. Let R, be the curvature of the 2-manifold M* and let v
evolve according o the normalized flow. Then the speed o and curvature k of vy
evolve according to da/dr = —-a’f; k®do and 3k/d7 = k” + abk’ + a?k® +
a’kRy|,, respectively.
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Proof. Both equations are straightforward to derive; the latter is somewhat
longer, but follows quickly from the useful formula giving the evolution of &
under the assumption dy/dr = V, where V' is an arbitrary vector field along
vy C M" (see{4]):

3k 91 = 2(V,; vV, v, T) — 4k¥ v, V,T) + 2{R(V,T)T,v,T). qed.

Using « = ak and R = a’R,, Propositions 2.1 and 2.2 directly yield equa-
tions (1).

3. Homothetic solutions

The proof of Theorem A, our major goal in this section, will be subdivided
into three steps:

Proposition 3.1. (i) 4 constant speed parametrized closed curve y: R/Z — E?
represents a homothetic solution of the curve shortening flow if and only if its
normalized curvature function k obeys

(3.1) K =Bk, B =k:-N,

where B is the same auxiliary function as in (1) and A is some positive constant.

(ii) Considering (3.1) as a system of differential equations on the real line, all
of its solutions exist globally. Obviously k = const - e~ /? does not change sign.

Note that an arbitrary solution on R to (3.1) need not factor over R/Z, as
required in (i), and even then the corresponding curve y with prescribed length
a(7), a solution to the Frenet equations, need not close up.

Proof. (i) Since by normalization «(, o) does not change under dilations,
it follows directly from (1) that homothetic solutions are represented precisely
by those closed curves with periodic k and 8 obeying:

(+) R P e

Just because of periodicity it is clear that u, is the square of some other
constant A > 0. (In case u, = 0 we could conclude k = 0, a contradiction.) To
prove p; = 0 we first note that taking an antiderivative (8 preserves periodic-
ity since the average of 8 over a period vanishes. The derivative of the periodic
function f:= ke’ is computed to be f’ = («k’ + Bx)e/ = —u,e/, ie., some
strictly negative factor times p,. Hence pu; = 0.

(i1) Global existence and uniqueness already hold for system (*), since the
differential inequality [(x® + B2)'| = 2|,k + p,B] < yu2 + p3 k> + B2 gives
rise to a global a priori growth estimate on yx2 + 8%. q.e.d.
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Substituting ¥ = Ae®/2 and B = - 1B’, we see that equations (3.1) and
equations (2) in Theorem A are equivalent. Hence equations (2) admit only
global solutions. Their periodicity and closedness properties are discussed most
casily using the first integral given in (3). For 1 > 0 the strictly convex
potential function ¥(B) determines precisely two numbers B_= B_(1) < 0 <
B,= B ,(n)suchthat V(B ,)=1.

Propositions 3.2.  Consider an arbitrary solution B of equation (2) lifted to the
real line:

(1) Up to translations, B is uniquely determined by its integral m and the
parameter  in the differential equation.

(i) B is even with respect to all its extremal points and therefore oscillates
between its minimum B_(7n) and its maximum B () with

1 1 (8, dB
period(n, A) = +-period(n,1) = —f e e
A Mo\l =V(B)

(iii) The period of B can be estimated in terms of the positive, monotone,
convex function T(B) = (e? — 1)/B:

V27T(B,)"* < A period(n,\) < V2#T(B_)"".
(iv) The tangent vector of the associated solution y: R = E? to the Frenet

equations rotates within a period of « by

O(1.1) = 0(n):= [ f(—nd—?‘v(—aﬁ

(v) The function ©: (0, 0) = R, 7 = O(n) defined in (iv) is strictly monotone
decreasing and has range (7, m2).

As indicated above, the claims (i), (ii), and (iv) easily follow from the first
integral given in (3). In order to see (iii), we rewrite equation (2) as B” +
2NT(B)B = 0 and use the Sturm comparison theorem. (v) is proven in the
appendix.

It seems worthwhile to point out that the A-dependence of period(n, A) and
© (7, A) just reflects the possibility of scaling homothetic solutions. Indeed we
can pass to any domain R//Z, [ > 0, and consider the curve y,(s) = Iy(s/1);
equations (2), (3), and (3.1) continue to hold when «, 8, B and A are replaced
by

e(s) = Te(3). Bis)=78(3). Bils)=B(3) ama =3,
respectively. Thus, one may think of A as corresponding to the scale of the
curve, after the shape of the homothetic solution has been fixed by 7 (cf.
Proposition 3.2(iv)).
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Proof of the classification statement in Theorem A. Because of 3.2(ii) it is
standard Frenet theory that the curve y.is symmetric about its normal lines at
points where the value of & is extremal. The closing up of v is easily discussed
in terms of the Coxeter group generated by the reflections about the normal
lines through two adjacent extrema of the curvature function. Since ®(7)/7 is
always nonintegral, this group has precisely one fixed point, the center of mass
of y. The curve therefore closes up iff, for some nonzero integer n, n®(7) is an
integral multiple of 27, the rotation index m. The numerical conditions stated
in terms of m and n follow directly from 3.2(v). (Our normalization of the
period of v is met putting A = n - period(n,1).)

Six of the solutions v, , are pictured in Figure 2. The curves were generated
by computer by solving ®(n) = m/n - 27 and then integrating system (3.1)
together with the Frenet equations, using the initial conditions 8(0) = 0 and
k(0) = K, (m) (cf. equation (3)).

It remains to calculate the transcendental relation between « and r for unit
speed homothetic solutions (i.e.: @« = 1, k = k). This readily implies the claim
on the transcendence of the noncircular ones; otherwise, since r? is an
algebraic parameter on any noncircular algebraic curve, x would be an
algebraic function of 2, a contradiction.

It is useful to introduce polar coordinates (r, ) about the center of mass of
Y.

Proposition 3.3.  The Killing field 3 /38 is known explicitly along v:

a — _2 - _
30 N <J, whereJ = kT — BN.

2 =
AV and K, =

Hence the extremal points of k and r coincide, and &y, = Nry;,

}\2

Proof Clearly the center of mass is preserved under the curve shortening
flow. Hence 3 /dr is parallel to dy /3t = W (cf. Proposition 2.1), and 3 /38 is
parallel to J. In fact, since {v,J,T) = 0, they must be proportional. In order
to determine the factor, we observe that T =J/|J|=3/36|719,/38 at the
extremals of x and compute:

9 d d
vJ = AN, whereas Vyag =751 Vi3 = N. qed.

Next we observe that equations (2), (3), and (3.1) yield B*+ x? =
AM(n + 1+ 2In(k/A)). Hence choosing our initial point so that r(0) = 7.,
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and noting that 9/9r is a unit vector perpendicular to J, we have

. = f5< > f _ k'de ‘da
* dk
= + 1+ 2In(xk/A mm.
kmn Ay + 1 + 21n(k/A) ’U/n (e/2) -

Again using Proposition 3.3, we can solve for « as desired:
k = Aexp(4A%r2 — 251).

4. Bounds and convergence for general trajectories

This section is devoted mostly to the proof of Theorem B, with more precise
estimates. We will make repeated use of the evolution equations (1) for the
planar case.

For instance, part (i) of Theorem B follows almost at once from 9k /97 =
(x’ + Bk). For each time r we subdivide y at all jumping points of sgne :
R/Z — {-1,0,1}, and obtain at most countably many pieces y,: [a;, b;) > E*.
Where k = 0 we clearly have (9/97)sgn(x) = 0 and, on the interior of an
interval for which « vanishes identically, the evolution equation implies
0 = 9k/d7 = O|k|/07. Thus, letting sgn(i) = sgn(x(as)), o € (a;, b;), we can
write

drlslle = 7 [ sen(o) 57 do = T sen(i) [* (" + ) do

2 sgn(i)(x'(b,) - K’(ai))-

Clearly, no term in the last sum is positive. In fact the sum is negative unless
k'(a;) = k'(b;) = 0 for all i (note that if ¥ does not change sign there is only
one piece and the above sum vanishes).

Part (ii) of the theorem is included in the following propositions on the
behavior of the Sobolev seminorms of k. We write x; = f¢ (3/k/d0/)*do and
m = \/xgx, .

Proposition 4.1.  The time derivatives x; = dx;/dr and m = dm/dr satisfy
the estimates

(i) %

<
(i) X, < -2x;,.4 +x,((3/71 — 2)m + 277 %),

2
(i) < 2m(—3’7 +2m+ xo).
X0
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Corollary. The solution to the evolution equations exists at least as long as
T < Tg = 4x0(0)‘2.

Proposition 4.2. Define C(7) = max{xy(7'): 0 < 7’ < 1) (note that C(71)
> 4n? > 32). The functions m(7) and x,(t), j =1, are bounded on the whole
existence interval in terms of C(7) and the initial data m(0) and x(0),- - -, x,(0),
respectively. Asymptotically, i.e., for 7 - C(7), C(1) sufficiently large, one has
the following bounds depending only on C(1):

() m(r) < 3C(7)?,

(i) x,(7) < 3/UHI2C(r)+,

When x, is not bounded—so the flow is approaching a singularity—the
above estimates are still adequately describing the behaviour of the x;. This is
the essential point of the complementary

Proposition 4.3.  Letting || ||; denote the L'-norm, one has

@ Jsl? > |} Pxg~1 forp > 2,

(i) x; > xo(xo/lIklI} — D forallj > 1.

Before proving the above propositions we proceed to the proof of part (iii)
of Theorem B.

Let y, € M? have L!-convergent normalized curvature x, and suppose v,
does not converge to a geodesic. Then there exist constants 7, and C > 0 such
that 7 > 7, implies /i k>do > C. Hence, Proposition 2.2 implies da /d7 > Ca’.
It follows that the length of vy, tends to zero.

We claim that in fact vy, converges to a point p € M2 To see this, we
consider 7, > oo and, for each i, a “strongly convex set” T, € M? (i.e. dI; has
strictly positive inward curvature) which contains y, and has diameter a
bounded multiple of diam(y, ). For 7 > 7, the curve vy, must remain inside the
fixed set I; if vy, ever touches 9I;, the curvature normal kN is actually
pointing inward in a small neighborhood of any point of first order contact. So
v, can never cross 9I;. We thus have a nested family of compact sets whose
diameters tend to zero.

Next we integrate equation (1) twice:

%foofouxdvdu= K + Lo,Bndu + Lofouanvdu + Co + D.

Since x converges in L!, the right-hand side of the above equation clearly
converges in L' to some function H(c). We claim that in fact H(o) = 0.
Suppose H(o,) = H, # 0 for some o,; then for all sufficiently large ,

HLO:—T]:D j;uxdvdu>l,

hence [§* [ k dv du must tend to infinity, contradicting convergence of .
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Setting the right-hand side of the above equation equal to zero, it follows by
induction that k is C*. Differentiating twice and observing that kR tends to
zero in L! as 7 = oo we recover the equation for homothetic solutions. Since
(M, g = a~*g,) is locally asymptotic to the plane the claim follows. q.e.d.

Proof of Proposition 41. We will use the notational shorthand [ = [} do
and follow the convention that the derivative operator 3/ = 8//ds/ is applied
only to the term immediately to the right.

To begin with we have by interpolation
(4.1) XX < X, X, for0<w<p<j.

Secondly, since

1
[8#(x? = x0) [l < 5 [ 184 2(k? = xo) |

p+1

1 p+1 v - 1 p+1 —
< E.EO( v )f|8x||3“+1 x|<§v§0( v )\/JT” il
inequality (4.1) gives, for all u > 0,
(4.2) [32(k? = x,)]|,, < 2* XX,11 -

Similarly, since

f K0’k
we also obtain
(4.3) 1607k || oo < \/xox,, + ‘/xox,,+1 .

At this point we invoke the flow equations (1) to compute

1 ) 1 Y —
+ Ef‘a(ifa K)I < XoX, + valxv + E xOxv+1a

1687 [l <

7/

J+1
% = zf 0%kd = —2x,,, + 2 ;0 (J ’; 1)/ "B/ + 1~k
= 2x;,, + f B33k ) ds + 2(j + 1)[ 8B(8%x)" ds + 2,

= -2x;, +(2/ + 1)/ (k% — x0)(3%) ds + 2¢;,

where we have set
[+ 1

J _
(4.9) P = Y (J': 1)[ (k2 — xo)af“_”icafx.

v=2
Because of (4.2) the above yields

(4.5) X; < =2x;00 (27 + Dyxex; x; + 29
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In particular, this gives inequality (i) of Proposition 4.1. To obtain the second
inequality it remains to bound ¢; for j > 1:

J=1y -
5= X (113)] 20 - xorna
p=1

pt1

+j§ (i)f k" kddk + [ (3%’
(10t = sl

4 io (i)”xi)"n“w\/xj_._:\/x—j T x0x; + K7 = xo]|.0%,-

Using the estimates (4.1) and (4.2), and (4.1) and (4.3), respectively, we bound
each term separately:

J +1
29, < 22 j

Hxoxy X;

+2:go({)(x0+ xoxl)xj+2(x0+ xoxl)xj

= (371 —(2) + 3)){xox, x; + 27 Ix x,.
Part (i) of the proposition now follows from (4.5).

To prove the remaining inequality (iii) we compute in a straightforward
manner from (i) and (ii):

2min = XX + Xgx < 4m2(—— +2m+ x,
x3

Proof of Corollary. From Proposition 4.1(i) and the interpolation inequality
mx, < 2x; + $x3 we conclude x, < §x3, hence, the result.

Proof of Proposition 4.2. Observe first that the right-hand sides of both the
inequalities are nondecreasing. Thus it will suffice to prove that exponential
decay holds for m(7) as long as (1) is violated, and to argue similarly for x;.

(i) A direct calculation shows that -m? + 2x3m + x3 < - 4x2 as long as
m < 2x§ + ix, fails. Therefore, it follows from Proposition 4.1(iii) that one
has i < - 4m aslong as m(7) > 3C(7)% (> 2x0(7)* + Lxo(7)).

(i1) By 'Proposition 4.1(ii) and the interpolation inequality x;,, > x?/x;_,
one has x, < -2/*1%; as long as x; < x;_;(} - 3/*'m + 2/*'C(r)?) fails. By
1nduct10n the boundedness of x;, j > 1, now follows from the bounds on m
and x;_;.



188 U. ABRESCH & J. LANGER

In order to obtain the desired estimate we may assume 7C(7) large enough
so that m(7) < 3C(7)%. One then argues inductively using % - 3/*1m +
2/*1C(7)? < 3/F2C (1) ‘

Proof of Proposition 4.3. Part (i) follows directly from Holder’s inequality.
Using this estimate with p = 4 and (4.2) one obtains

x
x%( HKIOIZ - 1) < f(xz — xo)k? <[k = xg | %0 < xgyx0%; -
1

This proves part (ii) in case j = 1. Inequality (4.1) now yields the general result
by induction.

5. Divergence and stability results

For a precise statement of the divergence result mentioned in (C) of §1 we
first recall that the algebraic area of a closed curve y: R/Z — E? is defined in
terms of an integral of the winding number N(x,y) over almost all points
x € E%: A(y) = [g2N(x,v)dx = %fydet(y,y’) do. The criterion will also in-
volve the rotation index m = Ind(y) = 1/27/, kds.

Proposition 5.1. Suppose vy is an initial curve satisfying one of:

(1) A(y) # 0 and A(y) - Ind(y) < 0,

(i) k > O along vy and N(p,vy) < 0 for some point p € E2.

Then along the trajectory vy, through y =Y, the L?-norm of the normalized
curvature k. diverges before the length of v, approaches zero, hence, within finite
time 7.

Proof. (i) The derivative of algebraic area with respect to 7 is straightfor-

ward to compute using 3y /37 = a*(bT + kN):

d _ 1 , 9 _ 2 — 2
dTA(YT)_ _j; det(Y—,—a aT‘YT)dO_ - j;"kds— 27ma”.
By assumption it follows that [A(y,)| = |4(y)| > 0.
Since part (i) of Theorem B gives a bound on the winding numbers,

27| N(x,v,)| < fl |k, |ds < fl |k|ds Vx e E?,
0 0

we deduce a uniform positive lower bound on the enclosed area, i.e., on
area{x: N(x,vy,) # 0}. Thus, the isoperimetric inequality yields a uniform
positive lower bound on the length of vy,.

However, according to the proof of the part (iii) of Theorem B, the length
would have to approach zero if the flow existed for all 7 > 0. In view of part
(i1) of Theorem B, the L?-norm of x must therefore diverge.
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(ii) In this case we consider the set F, = {x € E%: N(x,7,) < -1} and its
area a, = area( F,). By hypothesis a, > 0. Our goal is to show that a, is
nondecreasing, then again use the isoperimetric inequality and finish the proof
as above.

Notice that for an arbitrary smooth family of curves c.: R/Z — E? the
function 7 — a_ is only Lipschitz rather than C! (differentiability may be lost
at nontransversal intersections). The lower Dini derivative is given by

Dra, = /_ min{det(c/|c}], dc,/d7)(0): o € c*{ p}} ds(p).
oF,

In our case, since k_ > 0 (because of part (i) of Theorem B), we obtain the
desired estimate:

D a, = -/af min{k,(¢): o € v {p}} ds(p) = 0.

Actually, since k_ is constant in almost all fibres 7;1{ p}, a, is differentia-
ble for trajectories of the curve shortening flow. q.e.d.

Figure 3 shows some initial curves which must develop singularities by the
preceding criterion: Similarly, a curve resembling Figure 1(d) or (¢) must
become singular (though the proposition does not directly apply to (d), the
direction of the curvature normal vector kN implies that after a short time
7 > 0 the hypothesis will be satisfied).

L
e Y
; J%

(a) (b) (©)

F1G. 3.
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We turn now to the linear stability analysis, referring to the notation
introduced in (C) of §1. Setting a(u) = [;'k(s)ds, we can write & = {k &
C*(R/Z): [{kds = 2mm, m an integer, and [; e’ ds = 0}. It follows that
the tangent space to & at k € § can be identified with 7,2 = {h € C*(R/Z):
0= fd h(s)ds = [ J§h(u)due*D ds} = (h € C°R/Z): 0= [} h(s)ds =
fo h(s)[§e' ™ duds}. In particular, the tangent space at the m-fold circle is
given by

(51) T, Q= {h e C*(R/Z): 0 = fol hds = fol h(s)e'*des}.

We wish to consider now the linearization of the flow k = k" + (Bk)’ = P(k)
at some fixed k in Q: A= DP(k)h=h"+ (Bh) + (DB(k)h - k) = Lh,
where 1DB(k)h = [§hxde — sfy hde + [4 (6 — Y)xhdo.

For the special case k = k,, = 27m, the facts B(x,) =0 and [ hds =0
imply that the linear map L: T, & — T, 2 is given by:

(5.2) Lh=h" + 22h.

Proposition 5.2. The multiple circles k,, |m|>1, are linearly unstable
critical points of the flow on Q.

Proof. Set h(s)= cos(2ms). Then for m # +1, h € T, Q. Thus we have
found a positive eigenvalue: Lh = 47%h. q.ed.

We note that the above proposition has a simple geometric interpretation.
Consider, e.g., the case m = 2. Then varying k, = 47 in the direction of
h = cos2ms corresponds to shrinking one circle of vy, while enlarging the other
(one should picture a pair of tangent circles of slightly different radii, one
inside the other). The flow does not tend to restore such perturbations to
circularity, but rather, it amplifies the inequality in size. This shows once again
the striking difference between the simple and nonsimple cases of the curve
shortening problem.

On the other hand, consider the restriction of L to the “symmetric varia-
tions”, i.e., to the tangent space T,Q¢ = (h € TQ: gh = h} of Q°. 1t follows
from equations (5.1) and (5.2) that any 4 € T, Q¢ has Fourier series represen-
tation of the form "

h(s) = ¥ a;cos(2mjns) + b;sin(27jns)
j=1

(in fact by closedness a; = b, = 0 in case jn = m). Substitution of this series
into equation (5.2) yields

o0
Lh=(27)* Y (2m? — j*n?)(a,cos(2mjns) + b;sin(27jns)),
j=1
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which gives at once
Proposition 5.3. The flow on QO™ s linearly stable at «,, exactly when

Im/n| < V2 /2.

6. Appendix

Here we discuss the function @: (0, co) — R which arose in Proposition 3.2:

°0- L e

We recall that the convex potential function V(B) = e® — B — 1 assumes any
value n > 0 at precisely two points B_(n) < 0 < B, (7). It thus defines a
bijection (B, — B_): [0, 0) — [0, o), the inverse of which we shall denote by
p. Since p is a monotonic bijectien, claim 3.2(v) can equivalently be established
for the function O o p. This reparametrization will be useful, since by some
straightforward calculation it provides explicit formulae:

n=p(w)=wocothw — 1 + Ina(w?),
B,=B_ op(w)= +w—lno(w?),

(6.1)

where we have made use of the analytic function

(6.1) o(x)= sinhvx _ x*

>

xS Qk+1)

Introducing in addition the function

eB+/2 eB_/Z
)= vh| 5~ |
V/(B,) V'(B.)

(6'2) L B -1 B -1
A . 3 —_* : it
=5 (smh 3 + |sinh 2 ),

we can calculate:

e3%4B

ourr= ([ ]

6.3) yo(w) - V(B)

pwy _ h()dn  _ 1 h(zp(w)) dz
-/ .

yn(e(w) —m) Yo yz2(1-2)

Computer plots of the functions 1/7 - © e p and A4 < p in Figure 4 will provide
some intuition for further analysis.
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hep(w)

F1G. 4.

The main results of this appendix, which directly imply 3.2(v), are

Proposition 6.1. (i) lim, _, ¢®(n) = lim,,_, ,® ° p(w) = 72, lim, _, ., O(n)
=lim,_ Ocp(w)=m.

(ii) The functions h o p and © o p are decaying on [0, 5.22].

(iii) The function © ° p is monotone decreasing and hence > w on the interval
[5.22, o0).

Of course in (ii) it is sufficient to prove decay for & o p; because of formula
(6.3) the result extends to ® o p. Notice however, that /o p has a minimum,
approximately at 7.53, whereas O o p continues to decay (cf. (iii)).

Proof of (i). Clearly 3+/V(B)|sinh(B/2)|™ > 0, 1/2, 1 as B — —o0, 0,
0, respectively. It follows that h(n) — V2, 1 as 7 — 0, oo, respectively. This
yields the claim since [ dz/ Jz(1 — z) = .

Proof of (ii). Here the basic idea is to show that H'(x)/H(x) < 0 and
H(x)> 0 for yx €10, 522}, H(x) standing for the function 4 p(yx). To
begin with we list some properties of the function ¢ introduced in (6.1'):

o0
o(x)= Y K+l e

o 2k +3)
2xa’(x) = coshv/x — o(x),
(6.4) X 1 P
0(4x) -1= 4xk§0 m(4x) .

o) - a(x)’ = ax T T (40"
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and then calculate from (6.1) and (6.2):

b () = oG] o) | ;=S + S

o(whe™ o(we” -1
= [coshw + o (w?)(-1 + Ina(w?))]'

2
2sinh3. L+o(w?) ,
sinh(2w)/w — 1 — a(w?)

1+o
20(4x) — 1 — a(x)2 ’
where we have adopted the convention that ¢ means o(x), ¢’ means o’(x),

etc. Clearly H(x) > 0, as required, and its logarithmic derivative can be
written as follows:

H(x)=x+1/2¢’ +all:— -a(i)-

H/
(6.5) g ~hth +(fsa = F35) = fas
where
1 Ino _1o'(x/4)
fi= 2[ln 26’ +ax)], f2—4u(x/4)’
11+ 56’ 1 1
=577, T 5Ty
26(4x) — 1 — o(x)*\’ X 2k +3
=11 =11 4x
f4 ( n X n kzo (21( 4)' ( )
Step 1. The functions f,, f1a, f50, fa» 0°/0, and 6" /o’ are positive and
nonincreasing.

This follows directly from the previous formulae, the power series represen-
tations for ¢, ¢’, and ¢”, and the

Lemma on Power Series. Letf A(x) = X7_,a,x* and B(x) = L¥_obx* be
real power series with coefficients a,, b, > 0, convergingon D C R. If a, /b, is
a nonincreasing sequence, then the function A(x)/B(x) is nonincreasing on
D N[0, o0).

In order to control H’/H, it will be useful also to decompose the remaining
summand f; in terms of monotonic functions. We introduce the auxiliary
functions

r()—«ﬁ4m° 1= Lyt o),

x 30
(6.6) o N
p(x)=1+ x(o, - 9—) =1 +x(1n%> =1- —zx + O(x?).

o o 15
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A straightforward calculation yields:

I 72 ’
Po'+okfj =20" +(1 +r) = - rZ;
x o x
hence:
2 o” 1+ro’ r 1
(6.7) 2f1_3+r7 34r6 3+rx

Step 2. ¢ is monotonic and 0 < p(x) < ¢(0) =1 for x » 0. Using for-
mulae (6.4) and the definition of o, we calculate (x = w?):

wd o129 (L 1
1+ 2dw(lno(w ))—1+ 5 7 ln(zw(cothw w))

p(w?) ”

1 o(dw?) —1
2 o(d4w?) — cx(wz)2

Because of the expansions given in (6.4) for numerator and denominator the
above lemma on power series yields the monotonicity of ¢ as required.

Step 3. 1< 1+ r< ¢ t. Moreover both the functions r and r/(3 + r) are
nondecreasing. In order to show the positivity of r, we observe that the
function ¥(x) = Ine — x - 6’ /0 vanishes at x = 0 and has derivative ¥’ =
~x(o’/0)’ = 0. We compute that 7/ = x"}(1 — (1 + r) - ¢). Note that r’(0) =
1/30, and by continuity of r* we have (1 + r) - ¢ < 1 for small positive x.
Since by Step 2 ¢ is monotone decreasing, this inequality continues to hold for
all x, and all the remaining claims follow.

Step 4. Given 0 < u < x < v, one has

(6.8) Z(x) < Flu,0) = F,(u,0) = F_(u,0),

where

Fulno) = 55 (S + 5L )W+ (4 5000 + T ()5 W),

F_(u,0) = (oo + f)(0) + 35— (u) T

Using Step 1 and Step 3, this estimate follows directly from the formulae (6.5)
and (6.7).
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Step 5. Inequality (6.8) provides a numerical criterion for proving negativ-
ity of H'(w2)/H(w?), w € [0, 5.22}, and thus establishing part (ii) of Proposi-

tion 3.3. In fact we have the table:

Wi F—(Wi2’ w2 1) F(wiZ’ whi) - 10

0

1.6502 . .2883 -.349
2.2296 2618 -.373
2.82 2397 —-.439
3.2076 2222 -.328
3.5278 2083 -.314
3.7996 1972 -.309
4.0352 .1881 -.305
4.2426 .1806 -.364
44268 1743 -.334
4.5924 169 -.304
4.7418 1644 -.358
4.8778 1604 —-.344
5.0024 1569 —.348
5.117 1538 -.331
5.2226 1511 -.331

Proof of (iii).

Rather than making use of (6.3), we split the integral for

©op at B_+ 1; for large w this number gets arbitrarily close to - = —p(w),
the place where the unique maximum of the concave function B —
e~ B(n — V(B)) lies.

(6.9)

om = [ =2, - [" P
5. e - V(B) 51 e ?(n - V(B))

Step 1. ©, is monotone decreasing and converges to 0 for 7 — co. Substitut-
ing z = B — B_, a direct calculation yields

_n dz _ dz
GIOP(W)—-’(; \R1+ze“3')e"—l L \/(1+ZT(2W))9—2’_1'

The claim follows, since the function T(2w) = (e** — 1) /2w is monotonic and
tends to infinity with w. _
Step 2. On [1.5, o0) one has the differential inequality:

(610)  (8,0p)(w) < — —<0,0 (w)+(ie“'1‘1)w
. 2 p = 4W2 2 p 2W .
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Using the substitution z = B, — B and setting N(z,w) = (1 — zT(-2Zw))e’ —
1, we obtain ©, ¢ p(w) = (2! N(z,w) 1/*dz, hence:

2w-1 ze’T'(-2w)  dz 1

(€;00)(w) = —j:) N(z,w) N(z,w) i INCw —1,w)

Inequality (6.10) now follows from the estimates

ze’T'(=2w) T'(-2w) S T'(-2w)
N(z,w)  T(-z)=T(-2w) ~ 1~ T(-2w)
_ 1 1=+ 2w)e™™ S
w21 —(1—e2) /2w~ 4w?’

(1+(e™-1)/2w) - 1> Lezw“1 -1,

NQ2w — 1,w) = o

Q|

which are due to the monotonicity of T and the hypothesis 2w > 3.

Step 3. (0,°p)Y(w) < ~(O,0p(w) —7 +6-10"%)/4w? for w e [5.22,

00). The term 4w?(e®~1/2w — 1)"1/2 is easily checked to be monotone
decreasing on 2.5, co) by taking its logarithmic derivative; hence, calculating
its numerical value at w = 5.22, we obtain the claimed differential inequality
directly from (6.10).

Step 4. Notice that monotonicity of 0, < p follows from the previous step

by the mean value theorem in its integral form, since

lim ©,0p(w)= lim @op(w)— Lim ©,0p(w)=m.
W —> oo w— cO w— oC

In view of Step 1 we have thus proven part (iii) of the proposition.
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